DashVector
DashVector is a fully-managed vectorDB service that supports high-dimension dense and sparse vectors, real-time insertion and filtered search. It is built to scale automatically and can adapt to different application requirements.
This notebook shows how to use functionality related to the DashVector
vector database.
To use DashVector, you must have an API key. Here are the installation instructions.
Install
!pip install dashvector dashscope
We want to use DashScopeEmbeddings
so we also have to get the
Dashscope API Key.
import getpass
import os
os.environ["DASHVECTOR_API_KEY"] = getpass.getpass("DashVector API Key:")
os.environ["DASHSCOPE_API_KEY"] = getpass.getpass("DashScope API Key:")
Example
from langchain.embeddings.dashscope import DashScopeEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import DashVector
from langchain.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = DashScopeEmbeddings()
We can create DashVector from documents.
dashvector = DashVector.from_documents(docs, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = dashvector.similarity_search(query)
print(docs)
We can add texts with meta datas and ids, and search with meta filter.
texts = ["foo", "bar", "baz"]
metadatas = [{"key": i} for i in range(len(texts))]
ids = ["0", "1", "2"]
dashvector.add_texts(texts, metadatas=metadatas, ids=ids)
docs = dashvector.similarity_search("foo", filter="key = 2")
print(docs)
[Document(page_content='baz', metadata={'key': 2})]