Petals
Petals
runs 100B+ language models at home, BitTorrent-style.
This notebook goes over how to use Langchain with Petals.
Install petalsโ
The petals
package is required to use the Petals API. Install petals
using pip3 install petals
.
For Apple Silicon(M1/M2) users please follow this guide https://github.com/bigscience-workshop/petals/issues/147#issuecomment-1365379642 to install petals
!pip3 install petals
Importsโ
import os
from langchain.chains import LLMChain
from langchain.llms import Petals
from langchain.prompts import PromptTemplate
Set the Environment API Keyโ
Make sure to get your API key from Huggingface.
from getpass import getpass
HUGGINGFACE_API_KEY = getpass()
ยทยทยทยทยทยทยทยท
os.environ["HUGGINGFACE_API_KEY"] = HUGGINGFACE_API_KEY
Create the Petals instanceโ
You can specify different parameters such as the model name, max new tokens, temperature, etc.
# this can take several minutes to download big files!
llm = Petals(model_name="bigscience/bloom-petals")
Downloading: 1%|โ | 40.8M/7.19G [00:24<15:44, 7.57MB/s]
Create a Prompt Templateโ
We will create a prompt template for Question and Answer.
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
Initiate the LLMChainโ
llm_chain = LLMChain(prompt=prompt, llm=llm)
Run the LLMChainโ
Provide a question and run the LLMChain.
question = "What NFL team won the Super Bowl in the year Justin Beiber was born?"
llm_chain.run(question)